Oxygen consumption by anaerobic Saccharomyces cerevisiae under enological conditions: effect on fermentation kinetics.
نویسندگان
چکیده
The anaerobic growth of the yeast Saccharomyces cerevisiae normally requires the addition of molecular oxygen, which is used to synthesize sterols and unsaturated fatty acids (UFAs). A single oxygen pulse can stimulate enological fermentation, but the biochemical pathways involved in this phenomenon remain to be elucidated. We showed that the addition of oxygen (0.3 to 1.5 mg/g [dry mass] of yeast) to a lipid-depleted medium mainly resulted in the synthesis of the sterols and UFAs required for cell growth. However, the addition of oxygen during the stationary phase in a medium containing excess ergosterol and oleic acid increased the specific fermentation rate, increased cell viability, and shortened the fermentation period. Neither the respiratory chain nor de novo protein synthesis was required for these medium- and long-term effects. As de novo lipid synthesis may be involved in ethanol tolerance, we studied the effect of oxygen addition on sterol and UFA auxotrophs (erg1 and ole1 mutants, respectively). Both mutants exhibited normal anaerobic fermentation kinetics. However, only the ole1 mutant strain responded to the oxygen pulse during the stationary phase, suggesting that de novo sterol synthesis is required for the oxygen-induced increase of the specific fermentation rate. In conclusion, the sterol pathway appears to contribute significantly to the oxygen consumption capacities of cells under anaerobic conditions. Nevertheless, we demonstrated the existence of alternative oxygen consumption pathways that are neither linked to the respiratory chain nor linked to heme, sterol, or UFA synthesis. These pathways dissipate the oxygen added during the stationary phase, without affecting the fermentation kinetics.
منابع مشابه
Redox interactions between Saccharomyces cerevisiae and Saccharomyces uvarum in mixed culture under enological conditions.
Wine yeast starters that contain a mixture of different industrial yeasts with various properties may soon be introduced to the market. The mechanisms underlying the interactions between the different strains in the starter during alcoholic fermentation have never been investigated. We identified and investigated some of these interactions in a mixed culture containing two yeast strains grown u...
متن کاملWine yeast phenomics: A standardized fermentation method for assessing quantitative traits of Saccharomyces cerevisiae strains in enological conditions
This work describes the set up of a small scale fermentation methodology for measuring quantitative traits of hundreds of samples in an enological context. By using standardized screw cap vessels, the alcoholic fermentation kinetics of Saccharomyces cerevisiae strains were measured by following their weight loss over the time. This dispositive was coupled with robotized enzymatic assays for mea...
متن کاملEngineering of Saccharomyces cerevisiae for efficient anaerobic alcoholic fermentation of L-arabinose.
For cost-effective and efficient ethanol production from lignocellulosic fractions of plant biomass, the conversion of not only major constituents, such as glucose and xylose, but also less predominant sugars, such as l-arabinose, is required. Wild-type strains of Saccharomyces cerevisiae, the organism used in industrial ethanol production, cannot ferment xylose and arabinose. Although metaboli...
متن کاملMolecular and enological characterization of a natural Saccharomyces uvarum and Saccharomyces cerevisiae hybrid.
Saccharomyces cerevisiae plays a main role in the winemaking process, although other species, like Saccharomyces uvarum or Saccharomyces paradoxus, have been associated with must fermentations. It has been reported in recent years, that yeast hybrids of different Saccharomyces species might be responsible for wine productions. Although S. cerevisiae×Saccharomyces kudriavzevii hybrids have been ...
متن کاملHybridization within Saccharomyces Genus Results in Homoeostasis and Phenotypic Novelty in Winemaking Conditions
Despite its biotechnological interest, hybridization, which can result in hybrid vigor, has not commonly been studied or exploited in the yeast genus. From a diallel design including 55 intra- and interspecific hybrids between Saccharomyces cerevisiae and S. uvarum grown at two temperatures in enological conditions, we analyzed as many as 35 fermentation traits with original statistical and mod...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Applied and environmental microbiology
دوره 69 1 شماره
صفحات -
تاریخ انتشار 2003